Université de Lille IREM S.R. - 26 juin 2018

Angle de traversée de l'horizon d'un astre Durée du coucher du Soleil

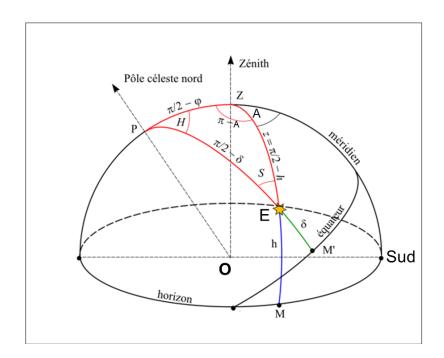


FIGURE 1 – Triangle sphérique local PZE. L'observateur est au centre O de la sphère locale. Le point Z désigne le zénith, P le pôle céleste nord et ϕ la latitude du lieu. L'étoile E a pour hauteur h, azimut A, déclinaison δ et angle horaire H. Les côtés du triangle sphérique sont $\frac{\pi}{2} - \phi$, $\frac{\pi}{2} - h$, $\frac{\pi}{2} - \delta$, et les angles H, $\pi - A$ et S.

A. Angle de traversée de l'horizon d'un astre

1) Démontrer que l'angle S est également l'angle sous lequel l'astre franchit le cercle de hauteur h. On considérera des angles mesurés dans le plan tangent à la sphère locale au point E.

Ainsi au lever et au coucher, l'angle S sera l'angle sous lequel l'étoile traverse l'horizon.

- 2) Démontrer qu'au lever/coucher de l'astre $\cos S = \frac{\sin \phi}{\cos \delta}$, et en déduire la valeur de S.
- 3) Que vaut l'angle S au lever/coucher à l'équateur?
- 4) Que vaut S au lever/coucher dans le cas du Soleil aux équinoxes ($\delta = 0$)?
- 5) Se placer à Lille ($\phi = 51^{\circ}$) et faire l'application numérique dans le cas du Soleil aux équinoxes puis aux solstices ($\delta = 23^{\circ}26'$).

B. Durée du coucher du Soleil

Dans la suite l'astre E est le Soleil, et on assimile l'angle horaire H au temps usuel t (on néglige donc en particulier l'équation du temps).

La durée du coucher du Soleil est définie comme l'intervalle de temps nécessaire pour que la hauteur de l'astre diminue d'une valeur égale à son diamètre apparent, soit 0.5° ou bien 2 minutes en convertissant en heures et fractions sexagésimales d'heure.

- 1) Exprimer la variation temporelle de la hauteur h en fonction de δ et S.
- 2) Ecrire $\frac{dh}{dt}$ au coucher du Soleil. L'expression obtenue ne dépendra que de la latitude ϕ et de la déclinaison δ .
- 3) En déduire l'expression de la durée du coucher du Soleil Δt .
- 4) En quels lieux et à quelles dates la durée du coucher est-elle minimale?
- 5) Calculer la durée du coucher à Lille ($\phi = 51^{\circ}$) au moment des équinoxes puis des solstices.
- 6) Retrouver l'expression de la durée du coucher de Soleil en faisant intervenir l'azimut A plutôt que l'angle S.