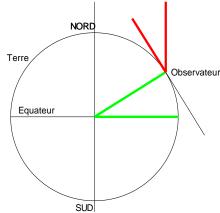
Astrolabe planisphérique

Syst	èmes	de coordonnées célestes avec Stellarium	2
	I	Découverte du logiciel Stellarium	
	II	Système de coordonnées azimutales	
	III	Système de coordonnées équatoriales	
Desc	eripti	on des différentes parties de l'astrolabe	4
	I	L'araignée	
	II	Le tympan	
	III	Montage de l'astrolabe	
Utili	isatio	n de l'astrolabe	5
	I	Lecture de la date (jour et heure)	
	II	Positionnement du Soleil sur l'écliptique	
	III	Fonctionnement de l'astrolabe	
	IV	Applications	
Con	struc	tion de l'astrolabe	7
	I	La projection stéréographique	7
	II	Construction algébrique de l'astrolabe	9
	III	Construction géométrique de l'astrolabe	11

Repérage et mouvements sur la voute céleste

Découverte du logiciel Stellarium Ι

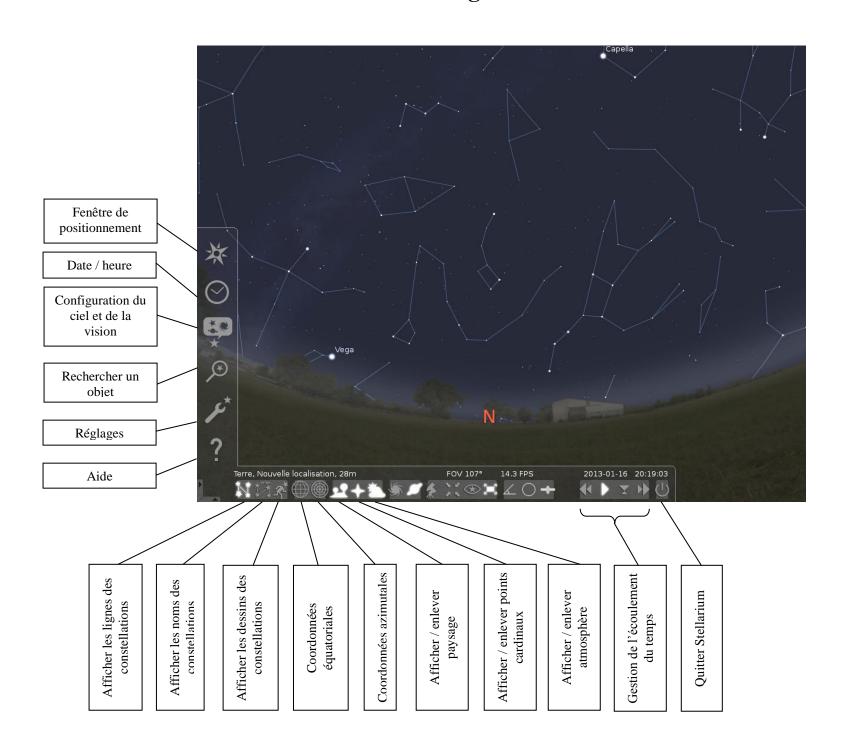

- 1) Réglages initiaux :
 - Lancer le logiciel « Stellarium ».
 - A l'aide de la fenêtre de positionnement, régler le lieu d'observation : 50° de latitude Nord, 3° de longitude Est (coordonnées approximatives de Valenciennes).
 - A l'aide de la fenêtre « Date / Heure », afficher le ciel visible ce soir à 22 h.
- 2) Qu'appelle-t-on « constellation »? Citer quelques constellations qui seront visibles ce soir. Dans quelle direction la constellation d'Hercule sera-t-elle visible ?
- 3) La Lune sera-t-elle visible ce soir ? Quelles planètes seront visibles ce soir ? Dans quelles constellations ?

Système de coordonnées azimutales

- 1) a) A l'aide des boutons situés en bas de l'écran, afficher la grille azimutale.
 - b) Quels nombres permettent de repérer l'étoile Pollux ? (utiliser, si nécessaire, la fenêtre de recherche pour trouver Pollux).
 - c) Donner la définition des coordonnées azimutales.
- 2) Quelques exemples : lire les coordonnées azimutales de l'étoile Regulus, de Jupiter, de la Lune.
- 3) Que deviennent les coordonnées azimutales lorsque le temps s'écoule? Et lorsque l'on change de lieu d'observation?
- 4) a) Quelle est la hauteur d'un astre à son lever ? à son coucher ?
 - **b**) En déduire la durée du jour aujourd'hui.
- 5) A quelle heure l'étoile Arcturus passera-t-elle au méridien ce soir (azimut 180°)?


III L'Etoile Polaire

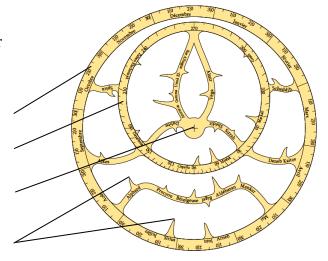
- 1) a) Décrire le mouvement des étoiles au-dessus de l'horizon nord, lorsque le temps s'écoule.
 - **b)** Comment expliquer ce mouvement?
- 2) Qu'appelle-t-on « Etoile Polaire »?
- 3) Démontrer que la hauteur de l'Etoile Polaire est égale à la latitude de l'observateur (cf. figure ci-contre).



IV L'écliptique

- Afficher la ligne écliptique (fenêtre « configuration du ciel et de la vision », onglet 1) « marques »).
 - Zoomer (légèrement) sur le Soleil, sélectionner une étoile proche du Soleil et verrouiller le suivi sur cette étoile (barre espace).
- 2) Décrire le mouvement apparent du Soleil et des planètes jour après jour. Comment expliquer cette trajectoire apparente du Soleil?
- 3) Qu'est-ce que le plan écliptique ? La ligne écliptique ?

Boutons du logiciel Stellarium

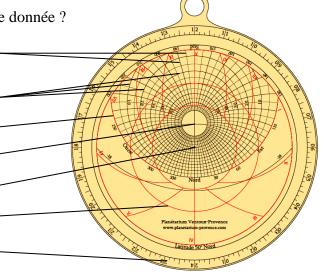


Description de l'astrolabe

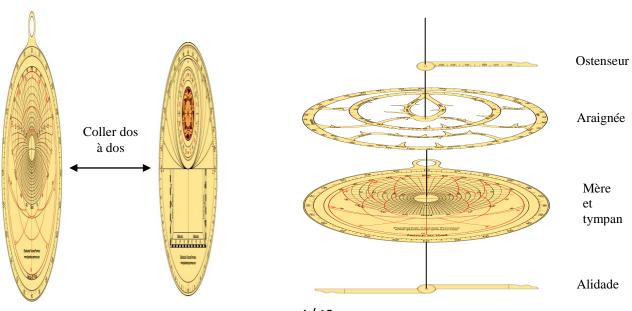
I L'araignée

L'araignée représente la voute céleste.

- 1) Annoter le schéma ci-contre.
- 2) Quels objets célestes ne peuvent figurer sur l'araignée ? Pourquoi ?



II Le tympan


Le tympan représente la « grille azimutale » pour une latitude donnée.

1) Annoter le schéma ci-contre.

2) Pourquoi le tympan est-il construit pour une latitude donnée ?

III Montage de l'astrolabe

Utilisation de l'astrolabe

I Lecture de la date (jour et heure)

- On lit l'**heure civile locale** sur le limbe de la Mère en face de la date du jour considéré sur le bord de l'araignée.
- □ Correction due à la longitude de l'observateur pour obtenir le **Temps Universel** (heure civile locale à Greenwich) : + 4 minutes par degré de longitude Ouest.
- Le **temps légal** (fuseau horaire) est obtenu en ajoutant 2 h en été ou 1 h en hiver.

II Positionnement du Soleil sur l'écliptique

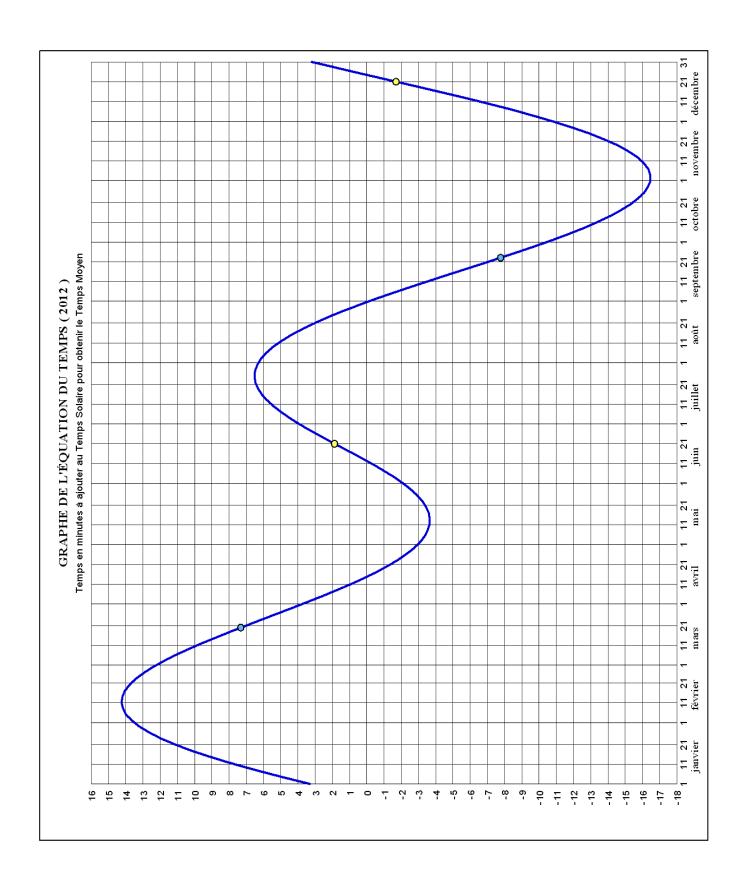
1ère méthode:

La connaissance de la longitude écliptique du Soleil permet de le placer directement sur l'écliptique.

2ème méthode:

L'ostenseur permet, par repérage de la date sur le bord de l'araignée, de positionner le **Soleil moyen** sur l'écliptique. Pour obtenir la position du **Soleil vrai**, il faut utiliser la courbe de l'équation du temps (donnée page suivante).

III Fonctionnement de l'astrolabe

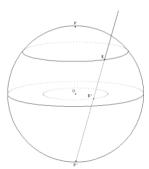

- L'astrolabe fait le lien entre trois informations :
 - o la position d'un astre (donc de l'ensemble du ciel);
 - o le jour ;
 - o l'heure.

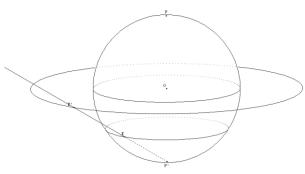
Connaissant deux informations, on en déduit la troisième.

- On positionne l'araignée :
 - à l'aide des almicantarats si on connaît la hauteur (ou l'azimut) d'un astre (attention : si l'astre n'est pas au méridien, il peut atteindre deux fois la même hauteur dans la même journée, à l'est ou à l'ouest)
 - o en faisant correspondre l'heure (civile locale) avec le jour.

IV Applications

- 1) a) A quelle heure se lève l'étoile Sirius aujourd'hui?
 - b) A quelle heure l'étoile Rigel passe-t-elle au méridien (plein sud) aujourd'hui?
 - c) Ce jour, Véga est mesurée à 20° de hauteur au-dessus de l'horizon ouest. Quelle heure est-il?
 - **d)** A quelle heure le Soleil se couche-t-il aujourd'hui?
 - e) Quelle est la durée du jour aujourd'hui?
- 2) L'étoile Aldebaran est-elle visible aujourd'hui à 22 h (temps légal) ? Quelles sont ses coordonnées azimutales à cet instant ?
- 3) A quelle date peut-on observer le passage d'Arcturus au méridien à 23 h (heure légale)?
- 4) Comment obtenir la direction du sud à toute heure du jour ?

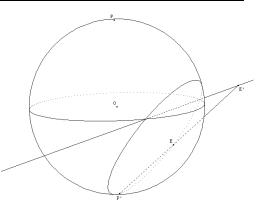

Construction de l'astrolabe


Dans toute cette section, on note $\mathfrak T$ la sphère céleste, O son centre, P et P' les pôles célestes nord et sud, $\mathscr F$ le plan de l'équateur.

I La projection stéréographique

Principe de la projection stéréographique de pole P' dans le plan de l'équateur

Le point E (différent de P') de la sphère \mathfrak{F} est envoyé sur le point E', intersection de la demi-droite [P'E) et du plan de \mathfrak{F} l'équateur.

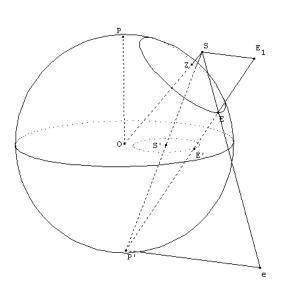


Rq. : la projection stéréographique d'un cercle est un cercle ou une droite (voir ci-après), ce qui facilite le tracé du tympan. D'autre part, la projection stéréographique limite la déformation des petites constellations.

Exercice 1 : la projection stéréographique d'un cercle passant par P' (et privé de P') est une droite

Soit $\mathcal T$ un cercle de $\mathfrak T$ passant par P', $\mathscr P$ le plan de projection (équateur) et $\mathscr P$ ' le plan contenant le cercle $\mathcal T$.

- 1) Justifier que les plans \mathcal{F} et \mathcal{F} ' ne sont pas parallèles. Soit d leur droite d'intersection.
- 2) Soit E un point de \mathcal{C} et E' son projeté dans la plan \mathcal{P} . Démontrer que E' est sur la droite d.
- 3) Soit E' un point de la droite d. Démontrer qu'il existe sur le cercle un unique point E différent de P' tel que (P'E') coupe le cercle T en E.
- 4) Conclure.

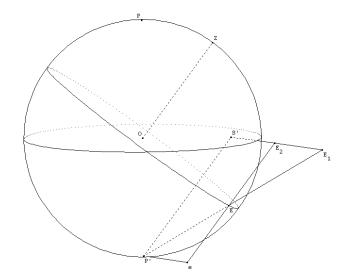


Exercice 2 : la projection stéréographique d'un cercle ne passant pas par P' est un cercle

Partie A: cas d'un petit cercle.

Soit:

- ☐ C un petit cercle de S (c'est-à-dire un cercle non centré en O) ne passant pas par P';
- E un point de て;
- S le sommet du cône tangent à 3 en 飞;
- E' et S' les projetés respectifs de E et S;
- e le point d'intersection de la droite (SE) et du plan tangent à 3 en P';
- \blacksquare E₁ le point d'intersection de la droite (P'E) et de la parallèle à (P'e) menée par S.
- 1) Démontrer que les points P', S', S, e, E, E' et E₁ sont coplanaires.
- 2) Démontrer que P'e = Ee.



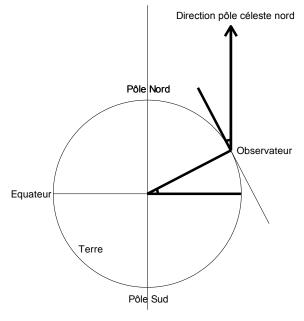
- 3) En déduire que $SE = SE_1$ puis que $S'E' = \frac{P'S'}{P'S} \times SE$.
- **4**) Justifier que la distance S' E_1 ne dépend pas de la position du point E sur le cercle \mathcal{T} .
- 5) Conclure.

Partie B: cas d'un grand cercle

Soit:

- □ C un grand cercle de 3 (de centre O) ne passant pas par P' et E un point de C;
- E₁ le projeté de E sur le plan de l'équateur ;
- Z le point de l'hémisphère nord de 3 tel que (OZ) est orthogonal au plan de C;
- \blacksquare E₂ le point d'intersection de la parallèle à (OZ) passant par E avec le plan de l'équateur ;
- e le point d'intersection de la parallèle à (OZ) passant par E avec le plan parallèle à l'équateur passant par P';
- S' le point d'intersection du plan \mathcal{F} et de la parallèle à (OZ) passant par P'.

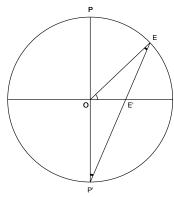
- 1) Démontrer que les droites (P'S'), (P'E₁) et (eE₂) sont coplanaires. En déduire l'alignement des points S', E₁, E₂.
- 2) a) Démontrer que la droite (eE) est tangente à 3.
 - **b**) Démontrer que eE = P'e.
- 3) Démontrer que $\frac{P'S'}{E_1S'} = \frac{E_2E}{E_2E_1}$ puis que $\frac{E_2E}{E_2E_1} = \frac{eE}{P'e}$.
- 4) En déduire que P'S' = E_1S' .
- 5) La distance E₁S' dépend-elle de la position du point E sur le cercle C?
- 6) Conclure.

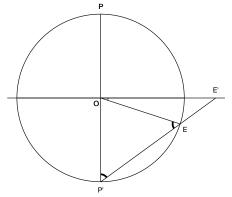

Conséquence : les centres des cercles de hauteurs (almicantarats) sont alignés sur la droite d'intersection du plan de l'équateur et du plan contenant le méridien (car $S' \in (OPZ)$).

La détermination des centres et des rayons des almicantarats est proposés dans les exercices suivants.

II Construction algébrique de l'astrolabe

Exercice 1 : hauteur de l'Etoile Polaire


Démontrer que la hauteur du pôle céleste nord (angle mesuré par l'observateur entre l'horizon et la direction du pôle céleste nord) est égal à la latitude de l'observateur.



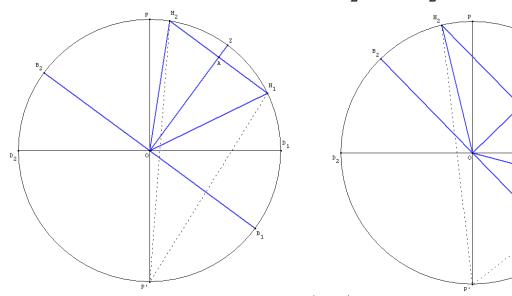
Exercice 2 : détermination de la distance OE'

Soit E un point de 3 différent de P' et E' son projeté sur F.

Plaçons-nous dans le plan (EPP') et notons respectivement ε et δ des mesures des angles $\widehat{OP'E'}$ et $\widehat{EOE'}$.

- 1) Quelle est la nature du triangle OEP'?
- 2) En distinguant deux cas (E situé dans l'hémisphère nord ou dans l'hémisphère sud), exprimer ϵ en fonction de δ .
- 3) En considérant le triangle OE'P', démontrer que :

OE' = OP $\tan\left(\frac{\pi}{4} - \frac{\delta}{2}\right)$ si E est dans l'hémisphère nord ;


OE' = OP $\tan\left(\frac{\pi}{4} + \frac{\delta}{2}\right)$ si E est dans l'hémisphère sud.

Rq.: le cas où E est situé sur l'équateur est trivial;

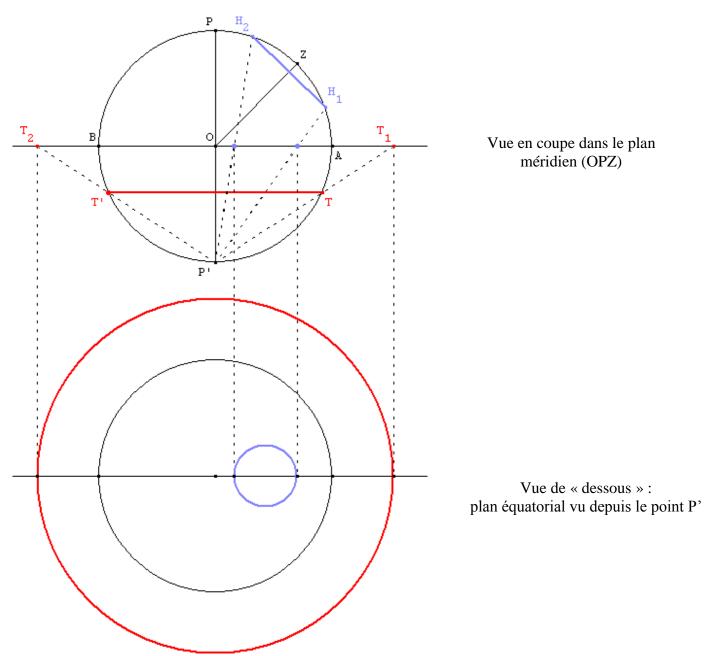
en considérant des angles orientés ($\delta \ge 0$ si E est dans l'hémisphère nord et $\delta \le 0$ sinon), la 1^{ère} formule s'applique pour tout point E de la sphère (différent de P').

Exercice 3: détermination du centre et du rayon du projeté du cercle de hauteur h

- 1) On note l la latitude d'utilisation de l'astrolabe et on considère le cercle de hauteur h dont on souhaite construire le projeté (almicantarat). L'angle $\widehat{B_1OH_1}$ a donc pour mesure h.
 - Démontrer que l'angle $\widehat{D_1OH_1}$ a pour mesure $h+l-\frac{\pi}{2}$ ou $\frac{\pi}{2}-h-l$ selon que H_1 est dans l'hémisphère nord ou dans l'hémisphère sud.
 - Démontrer que l'angle $\widehat{D_1OH_2}$ a pour mesure $\frac{\pi}{2} h + l$ ou $\frac{\pi}{2} l h$ selon que $h \ge l$ ou $h \le l$.

- 2) On se place dans le repère orthonormé (O, $\overrightarrow{OD_1}$, \overrightarrow{OP}). En utilisant les résultats de l'exercice 2 et en distinguant les cas $h \ge \frac{\pi}{2} l$ et $h \le \frac{\pi}{2} l$ d'une part, et $h \ge l$ et $h \le l$ d'autre part, démontrer que :
 - le point H_1 ' a pour abscisse $OP \times \cot \frac{h+l}{2}$;
 - le point H_2 ' a pour abscisse $OP \times \tan \frac{h-l}{2}$.
- 3) En déduire l'abscisse du centre et le rayon de l'almicantarat correspondant au cercle de hauteur h.

Exercice 4 : feuille de calcul


Créer une feuille de calcul donnant les centres et rayons des almicantarats (de 10° en 10°) en fonction de la latitude l.

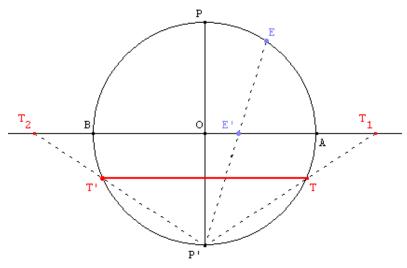
	E2 - B\$1*(1/TAN((D2+B\$7)/360*PI())+TAN((D2-B\$7)/360*PI()))/2												
	Α	В	С	D	E	F							
1	Rayon équatoriale de l'astrolabe (OP) :	5	Hauteur h (en degrés)		Abscisse du centre de l'almicantarat	Rayon de l'almicantara							
2				0	4,2	6,5							
3				10	3,4	5,2							
4				20	2,9	4,2							
5				30	2,5	3,4							
6				40	2,3	2,7							
7	Latitude / :	50		50	2,1	2,1							
8				60	2,0	1,5							
9				70	1,9	1,0							
10				80	1,8	0,5							
11				90	1,8	0,0							

Exercice 1 : le tympan

Sur la figure ci-contre sont représentés :

- P: pôle céleste nord;
- □ [AB] : trace de l'équateur céleste ;
- □ [TT']: trace du tropique du Capricorne (bord extérieur du tympan); latitude du tropique du Capricorne: environ 23,5° S.
- Z : zénith de l'observateur ;
- \square [H₁H₂]: trace d'un cercle de hauteur.
- 1) En reprenant le principe de la figure, construire un tympan vérifiant les conditions suivantes :
 - L'équateur est représenté par un cercle de 10 cm de diamètre.
 - Le tympan est utilisable à la latitude 50° N (Justifier que l'angle \widehat{AOZ} est égal à la latitude de l'observateur, voir exercice 1 page 6).
- 2) Représenter le zénith sur le tympan.
- 3) Tracer le cercle d'horizon.
- 4) Tracer les almicantarats représentant les cercles de hauteurs de 10° en 10°.

Exercice 2 : l'araignée


Déclinaison d'une étoile sur l'araignée :

la méthode précédente permet d'obtenir la distance OE' à reporter entre le centre de l'araignée (projection de P) et l'image de l'étoile projetée sur l'araignée (voir figure ci-dessous).

Ascension droite :

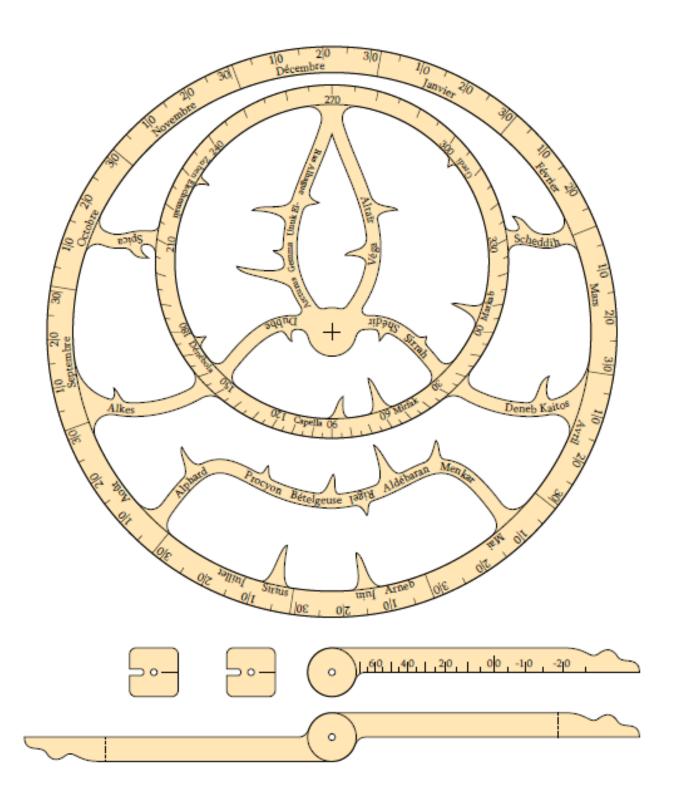
il suffit de choisir un « rayon origine » et de reporter directement les ascensions droites des astres (l'ascension droite d'une étoile étant lue directement sur l'équateur).

1) Relever, à l'aide de Stellarium, les coordonnées équatoriales de quelques étoiles. Représenter ces étoiles sur l'araignée (limitée par le tropique du Capricorne).

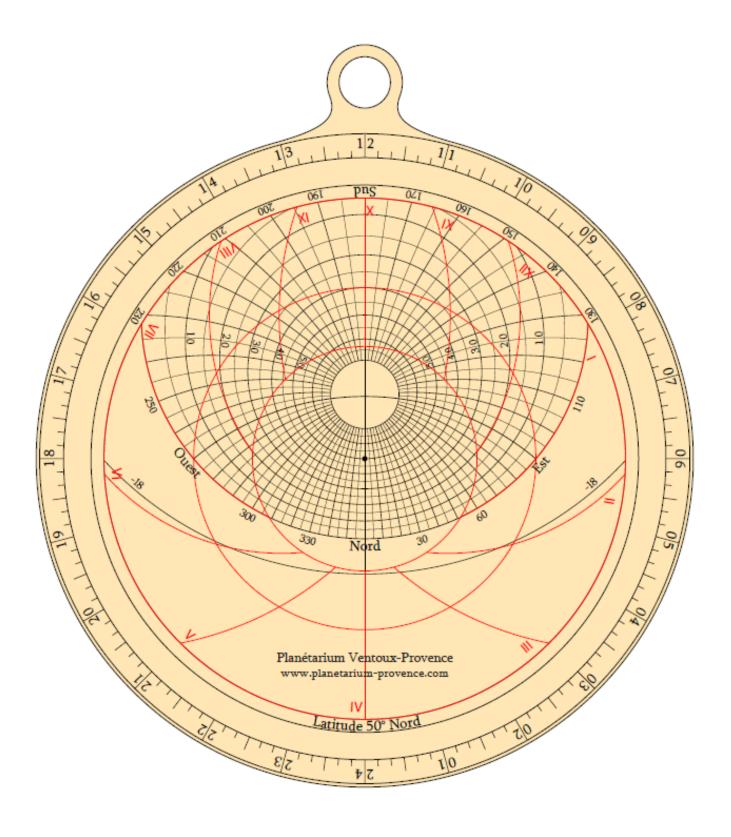
- 2) L'écliptique est représenté par un cercle tangent aux deux tropiques (par définition des tropiques). Les points de contact de l'écliptique et des tropiques correspondent aux solstices d'été (90° de longitude écliptique) et d'hivers (270° de longitude écliptique).
 - a) Tracer l'écliptique sur l'araignée.

La graduation de l'écliptique correspond à la longitude écliptique du Soleil (pris en compte dans l'équation du temps). Les formules de trigonométrie sphérique permettent d'établir la relation :

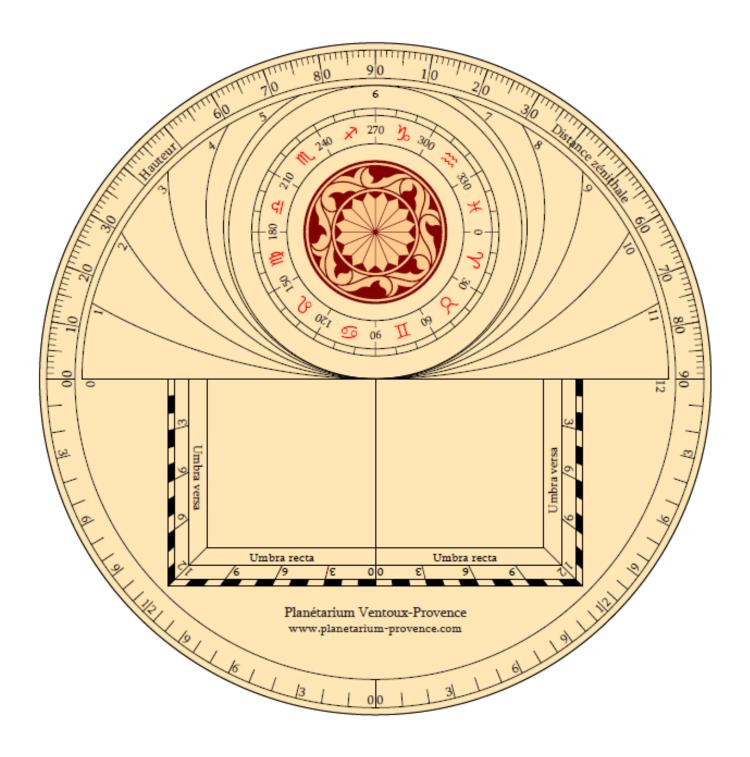
 $tg \alpha = \cos \omega tg l \text{ avec}:$


l : longitude écliptique du Soleil, α : ascension droite du Soleil,

 ω : obliquité ($\omega \approx 26,43^{\circ}$).


b) Construire une feuille de tableur donnant les valeurs de α correspondant aux longitudes écliptiques de 10° en 10° .

	L2	L2 • (***********************************																		
	Α	В	С	D	Е	F	G	Н		J	K	L	М	N	0	P	Q	R	S	T
1	1	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
2	Œ	0	9	18	27	37	47	57	68	79	90	101	112	123	133	143	153	162	171	180
3												,								
4	ı	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350	360	
5	Œ	189	198	207	217	227	237	248	259	270	281	292	303	313	323	333	342	351	360	


c) En plaçant ces valeurs de α sur le bord de l'araignée, graduer l'écliptique à l'aide de l'ostenseur.

Rète, ostenseur et alidade

Tympan pour la latitude 50° nord

Dos de l'astrolabe

Sources:

- www.planetarium-provence.com
- L'astrolabe Histoire, théorie et pratique, Raymond D'Hollander, Institut océanographique éditeur
- Les instruments de l'astronomie ancienne, Philippe Dutartre, Vuibert
- L'astrolabe au carrefour des savoirs
 - (Editeur : IREM Paris-Nord, Villetaneuse, 2000 Collection : IREM Paris-Nord Num. 100)